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Remote sensing of cloud properties using MODIS airborne

simulator imagery during SUCCESS
1. Data and models
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Abstract. We investigate methods to infer cloud properties such as cloud optical thickness,
thermodynamic phase, cloud particle size, and cloud overlap by comparing cloud and clear-sky
radiative transfer computations to measurements provided by the Moderate Resolution Imaging
Spectroradiometer (MODIS) airborne simulator (MAS). The MAS scanning spectroradiometer
was flown on the NASA ER-2 during the Subsonic Aircraft Contrail and Cloud Effects Special
Study (SUCCESS) field campaign during April and May 1996. The MAS bands chosen for this
study correspond to wavelengths of 0.65, 1.63, 1.90, 2.15, 3.82, 8.52, 11, and 12 um. Clear-sky
absorption due to water vapor, ozone, and other trace gases is calculated using a set of correlated
k-distribution routines developed specifically for these MAS bands. Scattering properties (phase
function, single-scattering albedo, and extinction cross section) are derived for water droplet
clouds using Mie theory. Scattering properties for ice-phase clouds are incorporated for seven
cirrus models: cirrostratus, cirrus uncinus, cold cirrus, warm cirrus, and cirrus at temperatures of
T =-20°C, -40°C, and -60°C. The cirrus are composed of four crystal types: hexagonal plates,
two-dimensional bullet rosettes, hollow columns, and aggregates. Results from comparison of
MAS data from a liquid water cloud with theoretical calculations indicate that estimates of optical
thickness and particle size are reasonably consistent with one another no matter which spectral
bands are used in the analysis. However, comparison of MAS data from a cirrus cloud with
theoretical calculations shows consistency in optical thickness but not with particle size among the
various band combinations used in the analysis. The methods described in this paper are used in
two companion papers to explore techniques to infer cloud thermodynamic phase and cloud

overlap.

1. Introduction

The retrieval of global cloud properties depends on accurate
interpretation of satellite radiometric data. Retrievals of cirrus
cloud properties from satellite-measured radiances are especially
difficult because of the wide range of cirrus heights, particle sizes
[Heymsfield and Platt, 1984; Heymsfield et al., 1990], particle
shapes [Arnott et al., 1994; Lawson et al., 1998] and their
scattering properties [e.g., Takano and Liou, 1989a, b; Yang
et al., 1997; Yang and Liou, 1998], and the resulting large spatial
and temporal variability of cirrus emittances and optical
thicknesses [e.g., Platt and Dilley, 1979; Sassen et al., 1990;
Spinhirne and Hart, 1990; Wielicki and Parker, 1992]. The task
of deriving cirrus properties from satellite data becomes even
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more difficult when cirrus appears simultaneously with other
cloud types. Because of the difficulty in analyzing scenes that
contain cloud overlap, operational cloud retrieval algorithms such
as the International Satellite Cloud Climatology Project (ISCCP)
by necessity employ the simplifying assumption that each
satellite field of view (FOV) contains a single cloud layer.

The ability to remotely sense cloud properties will be
enhanced when the new generation of cloud imagers are
launched, beginning with an Earth-viewing sensor called the
Moderate-Resolution Imaging Spectroradiometer (MODIS) that
has been developed as the primary imager for the Earth
Observing System-Terra and PM platforms. MODIS will provide
images in 36 spectral bands between 0.415 and 14.2 pm with
spatial resolutions of 250 m (two visible bands), 500 m (five
bands), and 1000 m (29 bands). To support MODIS algorithm
development, an aircraft version of the imager called the MODIS
airborne simulator (MAS) has been installed and operated on the
NASA high-altitude ER-2 research aircraft for a number of field
campaigns, including SUCCESS, over a wide range of
environmental conditions and surfaces.

The Subsonic Aircraft Contrail and Cloud Effects Special
Study (SUCCESS) project conducted a multiaircraft field
campaign during April and May 1996, primarily in close
proximity to the Department of Energy (DOE) Atmospheric
Radiation Measurement (ARM) program cloud and radiation test
bed (CART) site. Among the goals of the project [Toon and
Miake-Lye, 1998] are the investigation of the effect of aircraft
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exhaust and condensation trails (contrails) on the Earth’s
radiative energy balance, the formation of cirrus clouds, and
heterogeneous atmospheric chemistry. This study focuses on the
remote sensing of cloud properties, such as cloud thermodynamic
phase, particle size, and optical thickness, in scenes containing
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6.25 scans/s. Each scan line contains 716 Earth-viewing pixels
with a maximum scan angle extending approximately 43° on
either side of nadir. The spatial resolution is 50 m at nadir at a
nominal ER-2 altitude of 20 km, as compared with the 250-1000
m (at nadir) resolution of the MODIS instrument on the EOS
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Figure 10. Comparison of theoretical results with MAS reflectance and BTD measurements recorded from a cirrus
cloud on April 21, 1996, from region B (see Figure 8). Results are shown for (a) the reflectance at 1.63 pm versus
the reflectance at 0.65 pm; (b) the reflectance at 2.15 um versus the reflectance at 0.65 pum; (c) the BTD(3.82-
11 um) versus the 11-um brightness temperature, and (d) the BTD(8.52-11 um) versus the 11-um brightness
temperature. Visible (0.65 um) optical thicknesses are provided in the curves.

3.82, 8.52, 11, and 12 pum), clear-sky absorption due to water
vapor, ozone, and other trace gases is calculated using a set of
correlated k-distribution routines developed specifically for this
set of MAS bands. For each of the wavelengths listed above,
scattering properties (phase function, single-scattering albedo,
and extinction cross section) are utilized for both water droplet
and ice-phase clouds. Scattering properties for ice phase clouds
are incorporated for seven cirrus models. The cirrus are
composed of four crystal types: hexagonal plates, two-
dimensional bullet rosettes, hollow columns, and aggregates.

Results from comparison of MAS data from a liquid water
cloud with theoretical results indicate that estimates of optical
thickness and particle size are consistent with one another no
matter which bands are used in the analysis.

The comparison of MAS data from a cirrus cloud with
theoretical calculations show that the range of estimates of
optical thickness are consistent among the various bands selected
for comparison. Interestingly, the estimates of particle size are
not consistent among the various band combinations. The main
source of the uncertainty seems to be with the interpretation of
the 3.82-um MAS data, which is one of the most difficult to
model due to the sensitivity of measured radiances at this
wavelength to both reflected sunlight and thermal infrared
emission. When we obtain a more extensive set of cirrus
scattering properties we will perform a thorough sensitivity study
to determine the sensitivity of the theoretical calculations to the

assumed size distribution or to the assumed distribution of
ice-crystal shapes.

Appendix

It is sometimes expedient to perform radiative transfer
calculations with truncated phase functions; this is primarily due
to the strong forward peaks of the actual phase functions at 0.65-,
1.63-, 1.90-, and 3.82-um wavelengths. To achieve the same
result in multiple-scattering computations with the truncated
phase functions as with the nontruncated phase functions, an
adjustment must be made to the optical thickness and
single-scattering albedo. For both water- and ice-phase clouds,
there is a strong contribution in the forward scattering direction
due to diffraction. An additonal contribution to the strong
forward peaks of the phase functions of polyhedral ice crystals is
caused by & transmission through parallel planes of the
polyhedral crystals at a scattering angle of 0° [Takano and Liou,
1989a]. The fractions of scattered energy residing in the forward
peak due to diffraction f and d-transmission f; are removed from
the scattering parameters using the similarity principle. Primes
are used to denote the radiative parameters adjusted for
diffraction. Double primes are used to denote the scattering
parameters adjusted for both diffraction and & transmission
through opposing basal planes.

The extinction optical thickness (t)is the sum of of the
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scattering (t,) and absorption (t,) optical thicknesses. Since the
strong diffraction forward peak has no contribution from
absorption, the adjusted scattenng and absorption optical
thicknesses are

Ti=(1-N1, 5
T, =1, 6)
The adjusted extinction optical thickness is then
=1 +1, =(1- fO)t. ™)
The adjusted single-scattering albedo may be expressed as
o s
o=2e 0200 ®
T 1-f®

To adjust the scattering parameters for 3-transmission, a second
adjustment is made similarly to that in equations (6) and (7), so
the extinction optical thickness and single-scattering albedo
become

v'=(1- f0)1, )
@"= (_I__fL)fD. (10)
l—fs(l)

As Takano and Liou [1989a] point out, the expressions for
optical thickness and single-scattering albedo scaled for both
diffraction and § transmission can be simplified to

T'=(1~-f"®")7, (11)
=20 (12)
1- f"o’
where
f'=f+fs - ffs (13)

Again, there is no d-transmission adjustment for water droplet
clouds. Further, the § transmission becomes very small at longer
wavelengths because of increasing absorption.
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